Stopping criteria for iterative methods: applications to PDE’s

نویسندگان

  • M. Arioli
  • E. Noulard
  • A. Russo
چکیده

We show that, when solving a linear system with an iterative method, it is necessary to measure the error in the space in which the residual lies. We present examples of linear systems which emanate from the finite element discretization of elliptic partial differential equations, and we show that, when we measure the residual in H−1( ), we obtain a true evaluation of the error in the solution, whereas the measure of the same residual with an algebraic norm can give misleading information about the convergence. We also state a theorem of functional compatibility that proves the existence of perturbations such that the approximate solution of a PDE is the exact solution of the same PDE perturbed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing different stopping criteria for fuzzy decision tree induction through IDFID3

Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...

متن کامل

Robust Stopping Criteria for Dykstra's Algorithm

Dykstra’s algorithm is a suitable alternating projection scheme for solving the optimization problem of finding the closest point to a given one in the intersection of a finite number of closed and convex sets. It has been recently used in a wide variety of applications. However, in practice, the commonly used stopping criteria are not robust and could stop the iterative process prematurely at ...

متن کامل

Convergence Criteria for Iterative Methods in Solving Convection-diffusion Equations on Adaptive Meshes

In this work, sparse linear systems obtained from the streamline diffusion finite element discretization of the convection-diffusion equations are solved by a multigrid method and the generalized minimal residule method. Adaptive mesh refinement process is considered as an integral part of the solution process. We propose some stopping criteria for iterative solvers to ensure the iterative erro...

متن کامل

On the Generalized Lanczos Trust-Region Method

The so-called Trust-Region Subproblem gets its name in the trust-region method in optimization and also plays a vital role in various other applications. Several numerical algorithms have been proposed in the literature for solving small-to-medium size dense problems as well as for large scale sparse problems. The Generalized Lanczos Trust-Region (GLTR) method proposed by [Gould, Lucidi, Roma a...

متن کامل

A New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications

In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001